Extended Manifolds and Extended Equivariant Cohomology
نویسندگان
چکیده
We define the category of manifolds with extended tangent bundles, we study their symmetries and we consider the analogue of equivariant cohomology for actions of Lie groups in this category. We show that when the action preserves the splitting of the extended tangent bundle, our definition of extended equivariant cohomology agrees with the twisted equivariant de Rham model of Cartan, and for this case we show that there is localization at the fixed point set, à la Atiyah-Bott.
منابع مشابه
Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملEquivariant Cohomology and Analytic Descriptions of Ring Isomorphisms
In this paper we consider a class of connected closed G-manifolds with a non-empty finite fixed point set, each M of which is totally non-homologous to zero in MG (or G-equivariantly formal), where G = Z2. With the help of the equivariant index, we give an explicit description of the equivariant cohomology of such a G-manifold in terms of algebra, so that we can obtain analytic descriptions of ...
متن کاملGroup cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds
We use group cohomology and the de Rham complex on simplicial manifolds to give explicit differential forms representing generators of the cohomology rings of moduli spaces of representations of fundamental groups of 2-manifolds. These generators are constructed using the de Rham representatives for the cohomology of classifying spaces BK where K is a compact Lie group; such representatives (un...
متن کاملExtended quadratic algebra and a model of the equivariant cohomology ring of flag varieties
For the root system of type A we introduce and study a certain extension of the quadratic algebra invented by S. Fomin and the first author, to construct a model for the equivariant cohomology ring of the corresponding flag variety. As an application of our construction we describe a generalization of the equivariant Pieri rule for double Schubert polynomials. For a general finite Coxeter syste...
متن کاملOn the localization formula in equivariant cohomology
We give a generalization of the Atiyah–Bott–Berline–Vergne localization theorem for the equivariant cohomology of a torus action. We replace the manifold having a torus action by an equivariant map of manifolds having a compact connected Lie group action. This provides a systematic method for calculating the Gysin homomorphism in ordinary cohomology of an equivariant map. As an example, we reco...
متن کامل